Lingfield Education Trust

Calculation Policy
,

LET Calculation Policy

Contents

@ Background, purpose and aims p3
) Background, purpose and aims p4
© Models \& Structures p5
foomoty factual Knowledge p6
, Mental Calculation Expectations p7
(+) Addition p9

- Subtraction p18
(x) Multiplication p27
\div Division p35

Background, Purpose and Aims

Mathematics is a subject in which its learning episodes can be taught in multiple different ways, using multiple different representations and methods; this can cause significant confusion and cognitive overload for some students, especially lower attaining students.

The purpose of this document is to provide teachers and staff, who support students in mathematics lessons at Lingfield Education Trust, with an easy-reference guide to the methods that could be employed in the teaching of mathematics. The key principles underpinning this policy are:

- The importance of mental calculation methods, that are themselves built on secure factual knowledge.
- Giving pupils in each year group a reliable method for calculating that they can apply to varied representations, reasoning and problem-solving. Although there is minimal reference to bar modelling and part-part-whole models in the document, pupils should still be exposed to them regularly through your maths curriculum - this document is for the strategies you would use to complete the missing numbers in both of the aforementioned models.
- Reducing the amount of variation pupils are exposed to in the initial learning phase of calculating in a given year group. Variation is essential to a deep understanding, however we understand that a firm foundation is needed first.
- The importance of the concrete, pictorial and abstract phases of learning.
- Using the right manipulative at the right time - if it is needed.
- Building on prior learning through the careful sequencing of strategies.

The aim of this document is to allow staff to synchronise their practise, to ensure students encounter the same methods throughout their mathematical journey, regardless of their teacher. The aim is that this will provide consistency for students in the long-term and therefore aid in improving their outcomes.

This document was created by members of Lingfield Education Trust's Maths Network based on their teaching expertise, the most up-to-date research and through the study of effective exemplars.

Concrete, Pictorial and Abstract

Throughout this document each approach is split into three stages: concrete, pictorial and abstract. The idea is through a systematic approach students will begin, where possible, to explore mathematics by using physical manipulatives so that at the end of the process students should be able to form their own generalisations of mathematical rules.

Concrete	During the concrete stage, pupils will have the opportunity to work with manipulatives and other physical objects in order to understand the mathematical concept. There will be times where this is not possible or effective; in these cases students should begin at pictorial stage.
Pictorial	During the pictorial stage, pupils should be able to pictorially or diagrammatically represent ideas discovered during the Physical Stage. Again there may be occasions where this is not effective and so pupils should start at the abstract stage.
Abstract	During the abstract stage, pupils should no longer require a diagram to understand the concept. They should have formed comprehensive generalisations during which the underlying mathematics is fully understood.

Models \& Structures

This document aims to outline the main calculation strategies to be used progressively across school. There are however a range of models and representations that help pupils draw out the structure of the maths behind a task/question - in other words help pupils identify the operation and arithmetic required. This page details some of the most effective that you should use to help pupils expose the structure of the maths before they apply a mental or written strategy to complete the calculation(s).

This part-whole model supports children in their understanding of aggregation and partitioning. Due to its shape, it can be referred to as a cherry partwhole model.

When the parts are complete and the whole is empty, children use aggregation to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, children use partitioning (a form of subtraction) to find the missing part. Part-whole models can be used to partition a number into two models can be used to partition a number into
or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apply their understanding of the part-whole model to add and subtract fractions, decimals and percentages.

The single bar model is another type of a part-whole model that can support children in representing calculations to help them unpick the structure. Cubes and counters can model Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar model can support children to calculate by counting on from the larger number. It is a good stepping stone towards the continuous bar model. good stepping stone towards the cont for a range of values. Each rectangle represents a number. The question mark indicates the value to be found.

In KS2, children can use bar models to represent larger numbers, decimals and fractions.

Bar Model (Multiple)

The multiple bar model is a good way to compare quantities whilst still unpicking the structure. Two or more bars can be drawn, with a bracket labelling the whole positioned on the right hand side of the bars. smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective for larger numbers.

Multiple bar models can also be used to represent the difference in subtraction. An arrow can be used to model the difference.

When working with smaller numbers, children can use cubes and a discrete model to find the difference. This supports children to see how counting on can help when finding the difference.

Factual Knowledge

The written calculation strategies contained in this document are built up on the mental calculation strategies outlined on the next page, however these themselves are built on secure factual knowledge (fact fluency). These are the key milestones in what factual knowledge pupils should know to automaticity and by when. This does not just mean rote learning but using strategies to develop understanding through to automaticity. Programs to use for this are one of: Number Sense, NCETM Mastering Number or WR Fluency Bee.

Mental Calculation Expectations

Addition

$\stackrel{\sim}{\sim}$	- Perceptually subitise to 10 - Conceptually subitise to 5 - Find the total number of items in two groups, up to a total of 10 (combine and subitise, count all (aggregation), use known facts) - 1 more to 10 - Add zero, within numbers to 10
-	- Subitising 1-5 - Recognizing numbers on tens frames - Add 1-digit to tens - Add 1-digit to teens - Number Bonds to 10 - Bridging 10 single digits - Near doubles to 5 , e.g. $3+2$
	- Bridging $10(\mathrm{TU}+\mathrm{U})$ - 1-digit to a multiple of ten (e.g. 60 $+5)$ - Add multiples of 10 to a 2-digit number (e.g. $27+60$) - Add three 1 -digit numbers - Number Bonds to 20 - Number Bonds to 100 in 10 s - Add 10 to 2 -digit numbers using place value - Add 11 by adding 10 add 1 - Add 9 by add 10 take 1 - Near doubles to 10 , e.g $6+5$
	- Add 100 to any 3 -digit number using place value - Bridging to 3 -digit - Add pairs of multiples of 10 up to 2-digit using bonds - 2-digit Near Doubles (teens and tens, e.g. $14+13,30+20$) - 2-digit near 10 s round up (e.g. 27 $+19 / 21$) - Add any 2-digit numbers using partitioning - Add any 2-digit numbers using counting on

- Find the total number of items in combine and subitise, count all aggregation), use known facts)
- Subitising 1-5

Recogn

- Add 1-digit to tens
- Add-digit to teens
- Bridging 10 single digits
- Bridging $10(\mathrm{TU}+\mathrm{U})$
$+5)$
Add multiples of 10 to a 2-digi $+60$
- Number Bona
- Number Bonds to 100 in 10 s

Add
Add 11 by adding 10 add 1

- Add 9 by add 10 take
- Add 100 to any 3 -digit number

Bridging to 3 -digit

- Add pairs of multiples of 10 up to 2-digit using bonds
- 2-digit Near Doubles (teens and
- lens, e.g. $14+13,30+20$
- 2 -19/21) 10 s round up (e.g. 27 Add any
- Add any 2-digit numbers using counting on

Subtraction

- 1 less to 10

Remove from a small group and find how many are left, up to a total of 10 (take away and subitise, take away and count how many are left, use known facts)

- Subtract zero to 10
- Subtract pairs of 1-digit numbers
- Subtraction facts to 10

Bridging 10 by single digit subtraction

- Subtractl-digit from teens
- Subtractl-digit from ten
- Subtract 10 from a 2 -digit number using place value
- Bridging any 2 -digit 10 by single digit subtraction
- Subtract 1-digit from multiple of 10
- Subtraction facts to 20
- Subtraction facts to 100 in 10 s
- Subtract 11 by subtracting 10 then 1
- Subtract 9 by subtracting 10 and adding 1
- Subtract 100 from any 3-digit number using place value
- Bridging HTU by U subtraction
- Subtract a 2 -digit number from a multiple of 10
- Subtract pairs of multiples of 10
up to 2 -digit using bonds
- Subtract near multiples of 10 rounding up
- Subtract pairs of 2 -digit using partitioning
- Subtract pairs of 2-digit using counting on
- Doubles to 5
- Double numbers to 5

Count forwards and backwards in
$2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

- Double numbers to 10

Double any multiple of 10 up to 50

- Recognize odd and even
- Rapid recall of $x 2,10,5$ as a minimum
- Halve even numbers to 20
- Halve any multiple of 10 with an
even tens digit up to 100
- Rapid recall of division facts for $\times 2,10,5$ as a minimum

Double any multiple of 10 up to 100

- Find 4 of a number by doubling and doubling again
- Rapid recall of $x 3,4,8$ as a minimum
- Multiply any 2 -digit number by 10
- Multiply TU $x \mathrm{U}$ using partitioning
- Use place value and known facts to $\mathrm{TU} \times \mathrm{U}$, e.g. 80×3
- Halve any multiple of 10 up to 100
- Find a quarter by halving and halving again
- Rapid recall of division facts for $\times 3,4,8$ as a minimum
- Identify the remainder when dividing TU by $2,10,5$
- Divide any 3-digit multiple of 10 by 10
- Use place value and known facts to HTU \div U, e.g. $400 \div 8$

Experience has shown us that longer, more complex written methods often go wrong through the mental calculations within them.

It is essential that pupils are taught these mental calculation skills.

Once pupils have mastered the relevant mental and written methods for their year group, it is advisable for them to reason about which method suits a given calculation - what was the most efficient way of doing it!

Please see our mental calculation policy for further detail to support these expectations.

Mental Calculation Expectations

- Add 1000 to any 4-digit number
using place value
Bridging up to 4 -digit
- Add pairs of multiples of 10 up to 3 -digit using bonds
- 2-digit Near Doubles to 50, e.g. 36
$+37$
2-digit near 10 s round up \& down (e.g. $27+19 / 21$)
it numbers using partitioning
Ad any 3-c
it numbers using counting on

Use place value to add powers of Bridging (U.t +

- 2-digit Near Doubles to 100, e.g $76+77$ 198)

Add any U.t pairs (e.g $3.5+2.8$)
Using partitioning
using counting on les of U.t by making $\times 10$ larger

- Subtract 1000 from any 4-digit number using place value
- Bridging THTU by U subtraction Subtract pairs of multiples of 10
Up to 3 -digit using bonds
-
- Subtract any 3-digit numbers
using partition
- Subtract any 3-digit numbers
using counting on
-
- Use place value to subtract
powers of 10 up to $1,000,000$
- Subtract near hundreds (e.g. 427 - 198)
- subtract any U.t pairs (e.g 3.5 -
2.2) using partitioning
subtract any U.t pairs (e.g 3.5 -
2.7) using counting on
by making $\times 10$ lattiples of U.t by making $\times 10$ larger
- Use place value to add powers of 10 to any number
Bridging (U.th + .th)
- Near doubles to tenths (e.g. $1.7+$ 1.6)
- Near tens to tenths (e.g. $4.2+1.9$)

Add any U.th pairs (e.g $3.52+$
Add any U.th pairs (e.g
2.87) using partitioning
Add any U.th pairs (e.g $3.52+$ 2.87) counting on

Use place value to subtract

- powers of 10 from any number
e. $4.6-1.9$ near tens to tenth e.9. 4.6-1.9

Subtract any U.th pairs (e.g 3.52
2.31) using partitioning

Subtract any U.th pairs (e.g 3.52 2.31) using counting on

- Double any 2-digit number
- Double any multiple of 100
- Rapid recall of all tables to 12×12
- Multiply three 1 -digit numbers
- Multiply
- Multiply HTU $\times \mathrm{U}$ using partitioning
- Use place value and known fact to HTU \times U, e.g. 400×3
- Halve any even number to 100

Rapid recall of all division facts for tables to 12×12
Identify the remainder when
dividing HTU by $2,10,5$

- Divide any number to 1000 by

10/100

Use place value and known facts to THTU \div U, e.g. $1200 \div 3$

- Double 3-digit multiples of 10
- Double U.t

10,100,1000

- Multiply U.t using partitioning
- Use place value and known facts
to THTU \times U, e.g. 8000×3
- Multiply pairs of multiples of 10 with same place value ,e.g. $400 \times$
- 300

Multiply by 50 by multiplying by
100 and halving
Multiply by 25 by multiplying by again

- Multiply by 20 by multiplying by 10
and doubling
- Multiply by 5 by multiplying by 10
- Double any number including to 2 dp
Multiply whole numbers and decimals by $10,100,1000$
- Multiply U.th $\times \mathrm{U}$ using partitioning
- Use place value and known facts
for decimals, e.g. 0.3×4
- Multiply pairs of multiples of 10 with differing place value, e.g. 4000×30
- Halve any number including 2dp Divide whole numbers and
decimals by $10,100,1000$
decimals by $10,100,1000$ no facts for decimals, e.g. $3.2 \div 8$
Divide pairs of multiples of 10 with differing place value, eq $8000 \div$ 200 Divide by 50 by dividing by 100
- Divide by so
- Divide by 25 by dividing by 100 and doubling and doubling again
- Divide by 20 by dividing by 10 and halving
- Divide by 5 by diving by 10 and doubling

Experience has shown us tha longer, more complex written methods often go wrong
through the mental calculations within them.

It is essential that pupils are taught these mental calculation skills.

Once pupils have mastered the relevant mental and written methods for their year group, it is advisable for them to reason about which method suits a given calculation - what was the most efficient way of doing it!

Please see our mental calculation policy for further detail to support these expectations.

Lingfield

Addition

Pupils to use a range of practical resources to add
numbers up to three.

Reception

Pupils to use a range of practical resources to add
numbers up to ten. This must progress to using a tens
frame.

National Curriculum
add one-digit and two-digit numbers to 20 , including zero; read, write and

Concrete	Pictorial	Abstract
Pupils to use a range of practical resources with calculations bridging through ten to not use exchange. The concept if ten ones equalling one ten though is to be emphasized. They should progress to using labelled physical number lines.	Pupils to use a printed, labelled number line to count in steps of one for addition. $4+3=7$	Pupils to record their addition calculations as mathematical statements (number sentences) using the addition and subtraction symbols. $4+3=7$

National Curriculum
mentally, including: a two-digit number and ones, a two-digit number and
mentally, including: a two-digit number and ones, a two-digit,
tens, two two-digit numbers adding three one-digit numbers
Lingfield
Year 2

Concrete	Pictorial	Abstract
Pupils to use labelled, physical number lines to bridge tens. $38+4=42$	Pupils to draw their own blank number lines to bridge tens. $38+5=43$ $38+23=61$	Pupils to use informal jottings to bridge through tens using the understanding developed using number lines. $\begin{array}{ll} 38+4=43 & 38+2=40 \\ & 40+2=42 \\ & 38+2=40 \\ 38+23=61 & 40+21=63 \end{array}$
Pupils to use Base 10 to practically experience adding and regrouping. This must also be done with counters ready for Year 3. $47+32=79$ $47+35=82$	Pupils to draw Base 10 images, which again must move into using counters ready for Year 3. $47+32$	Pupils to use expanded method with no regrouping before moving onto it. $40+7$
	$47+32=79$	

Year 3

Year 4

ment

Year 5

Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with pupils working below age-related expectations.	Use of column addition for numbers including millions before using for numbers with up to three decimals places.
		$3,495,032+642,584=$
		$\begin{array}{lllllll}3 & 4 & 9 & 5 & 0 & 3 & 2\end{array}$
		+ 06642058
		413076
		11
		$341.924+64.294=$
		341.924
		+ 64.294
		406.218
		$1 \begin{array}{lll}1 & 1\end{array}$

Year 6

Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with pupils working below age-related expectations.	Use of column addition for numbers including millions before using for numbers with up to three decimals places.
		$3,495,032+642,584=$
		$\begin{array}{lllllll}3 & 4 & 9 & 5 & 0 & 3 & 2\end{array}$
		+ 06642054
		413076
		1
		$341.924+64.294=$
		341094
		$+64.294$
		406.218
		111

Subtraction

Reception

Pupils to use a range of practical resources to subtract
numbers up to ten. This must progress to using a tens

frame. | Pupils use simple diagrams, including mark making on |
| :--- |
| prepared ten frames to calculate subtraction statements |
| (number sentences). |

National Curriculum subtract one-digit and two-digit numbers to 20 , including zero; read, write
and interpret mathematical statements involving subtraction (-) and equals (=) signs

Lingfield

Year 1

Concrete								Pictorial	Abstract
Pupils to use a range of practical resources to subtract numbers up to twenty. This must progress to using physical number lines.$7-3=4$								Pupils to use a printed number line to back in steps of one for the reduction structure of subtraction. $7-3=4$ Pupils to use a printed number line to count on in steps of one for the comparative difference structure of subtraction.	Pupils to record their subtraction calculations as mathematical statements (number sentences) using the addition and subtraction symbols. $7-3=4$

Year 2

Concrete	Pictorial	Abstract
Pupils to use labelled, physical number lines to bridge tens. $54-6=48$	Pupils to draw their own blank number lines counting on to bridge tens.	Pupils to use informal jottings to bridge through tens using the understanding developed using number lines. $\begin{array}{ll} 54-6=48 & 54-4=50 \\ & 50-2=48 \\ & 72-30=42 \\ 72-35=37 & 42-2-3=37 \end{array}$
Pupils to use Base 10 to practically experience subtracting and regrouping. This must also be done with counters ready for Year 3.	Pupils to draw Base 10 images, which again must move into using counters ready for Year 3.	Pupils to use expanded method with no regrouping before moving onto it.

Year 3

Year 4

COnCrete
Pupils to use counters to practically experience subtracting. $4345-1212=3133$
Thousands

Pictorial

Pupils to draw counters crossing out for regrouping.
$4345-1212=3133$

Thousands	Hundreds	Tens	Ones
1000			

4345
$-\quad 1312$
31133

$4343-1214=3129$

$4343-1214=3129$

4	$3{ }^{3} 4$	3	
-	1	2	1
3	1	2	9

Year 5

Year 5		
Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with pupils working below age-related expectations. -	Use of column subtraction for numbers including millions before using for numbers with up to three decimals places.

Year 6

Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with	Use of column subtraction for numbers including millions before using for numbers with up to three decimals places.
		$\begin{array}{rrrrrr} { }^{2} 3 & { }^{13} 4 & { }^{1} 1 & 8 & { }^{11} 2 & { }^{1} 0 \\ - & 6 & 4 & 2 & 9 & 4 \end{array}$
		2776
		$\begin{array}{rrrrrr} { }^{2} 3 & { }^{13} 4 & { }^{1} 1 & \cdot & { }^{8} 2 & { }^{11} 2 \end{array}{ }^{1} 0$
		277 . 62 2

Multiplication

Reception

Concrete	Pictorial	Abstract
Children use physical resources to solve multiplication problems involving doubling. Double 3 is $\underline{6}$ $3+3=6$	Children use pictorial representations to solve multiplication problems involving doubling.	All multiplication work will fall within the concrete and pictorial phase with practical resources at this age.

Year 1

	Concrete
	In Year 1, children use concrete resources to solve multiplication problems. Children represent multiplication as repeated addition in many different ways. This should include

Use a number line to jump in multiples of 2,5 and 10 (repeated addition).

$$
5+5+5=15
$$

$$
3 \times 5=15
$$

National Curriculum
calculate mathematical statements for multiplication within the
multiplication tables and write them using the multiplication (x) and equals
$(=)$ signs
(=) signs
Lingfield

Year 2

Concrete	Pictorial	Abstract
Use a range of physical resources to practically experience repeated addition and multiplication.	Make marks to create arrays show repeated addition of 2, 3,5 or 10 .	Write repeated addition sentences to match sets of objects or pictures. $5+5+5+5=20$
Numicon number tracks used alongside cuisenaire rods are an excellent way to bridge towards the use of number lines for repeated addition.	Use a number line to represent jumps in groups of 2, 3, 5 and 10 (counting on using repeated addition) where the number of jumps will equal the number of groups. Children can progress to drawing their own number lines.	Use the multiplication symbol to replace repeated addition. $7 \times 3=21$

Yeor 3		
Concrete	Pictorial	Abstract
Create arrays using dienes and position these correctly on a grid (to introduce the grid method for 2-digit x 1-digit). Progress to use counters ready for Year 4.	Use marks to represent Base 10 on a multiplication grid method (2-digit x 1-digit) and likewise for counters.	Replace resources/marks with digits on an expanded grid. Move on to the grid method.

National Curriculum
formal written layout
Lingfield

Year 4

Concrete
Pupils to use Base 10 to support multiplication.
100 30 6

Pupils to use counters to support multiplication using regrouping as they do.
45×6

Pictorial

Pupils to create pictorial representations of Base 10 to support multiplication.

Pupils to draw counters to support multiplication using regrouping as they do.

45×6

 ,

Abstract

Introduce short multiplication as a formal written method for multiplying 2 or 3 digit numbers by 1 digit numbers using the expanded method to show the addition of two products.

Use of short multiplication for multiplying 3-digit by 1digit numbers.

National Curriculum
multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers

Year 5

National Curriculum
multiply multi-digit numbers up to 4 digits by a two-digit whole number using
the formal written method of long multiplication

Year 6

Lingfield

Division

Reception

Concrete
Children solve division problems by sharing amounts into two equal groups to develop concept of halving. Children use concrete resources to solve problems.

There are eight apples shared equally between two bags. How many in each bag.

Children also solve problems by grouping and counting the number of groups.

Children also solve problems by grouping and counting the number of groups using pictorial representations, including number lines ready for Year 1.

Put these into pairs.

Abstract

All division work will fall within the concrete and pictorial phase with practical resources at this age

Put these socks in pairs.

There are eight apples shared equally between two bags. How many in each bag

Children solve division problems by sharing amounts into equal groups. Children use pictorial representations to solve problems involving two groups and halving.

Pictorial

\square

Year 1

Concrete
Children solve division problems by sharing amounts into equal groups. Children use concrete resources to solve problems.
?

Children also solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line ready for Year 2.

E8S8988889
-00000-00000-00000-00000-

There are 20 apples altogethe
They are put in bags of 5 .
w many bags are there?

Children also solve problems by grouping and counting the number of groups using pictorial representations, including number lines ready for Year 2.

Yeor 2		
Concrete	Pictorial	Abstract
Use of concrete apparatus for sharing and grouping to continue. $18 \div 3=6$	Children make marks to show sharing between $2,3,5$, or 10 . Children make marks to show division by grouping sets of 2, 3,5 , or 10 . Progress to use of a number line to represent jumps in groups of $2,3,5$ and 10 (counting on using repeated addition) where the number of jumps will equal the number of groups. $18 \div 5=6$	Pupils to write their own division statements to record their calculations using the division and equals symbols.. $18 \div 3=6$

Year 3

Concrete
Use of concrete apparatus for sharing and gro continue.

$48 \div 2$

When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones.

Use a number line to represent jumps in groups of 2, 3, 4, 5 6,8 and 10 (counting on using repeated addition) where the number of jumps will equal the number of groups and the number left over is the remainder.

Use the division symbol to record calculations when dividing by $2,3,4,5,6,8$ and 10 . Make explicit links between multiplication and division.
$36 \div 3=12$
$36 \div 12=3$
Use marks to show sharing in $4 \mathrm{~s}, 6 \mathrm{~s}$ and 8 s .
$32 \div 4=8$

Year 4

Pictorial

Use a number line to represent jumps in equal groups using all multiplication facts (as in year 3 - repeated addition) if required. This is consolidation and linking to Year 3.

Use a number line to count 'ten lots of' / 'ten groups of' and find remainders (chunking method). Progress to children choosing their own way of chunking using known multiplication facts.

Abstract

Do not use the flexible strategy in White Rose for main written method - that can be used as a mental strategy

Use of short division for dividing 2-digit numbers by 1 -digit numbers (links to the number line work) with no remainders and then remainders.

	2	1
4	8	4
	2	2
4	8	9

Progress to use of short division for dividing 3-digit numbers by 1 -digit numbers (links to the number line work) with no remainders and then remainders.

National Curriculum
divide numbers un to 4 diaits bv a one-diait number usina the formal written divide numbers up to 4 digits by a one-digit number using the formal writt
method of short division and interpret remainders appropriately for the

Lingfield

Year 5

Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with pupils working below age-related expectations.	Use short division for up to 4-digit numbers divided by a single digit including remainders. Start with exact answers throughout.
		213
		$3 \mid 169$
		Progress to no remainders but regrouping within.
		226
		$3 \left\lvert\, \begin{array}{lllll}3 & 6 & 7 & 19 & 18\end{array}\right.$
		Progress to remainders and regrouping within.
		056
		$7 \longdiv { 3 ^ { 3 } } 8 { } ^ { 3 } q { } ^ { 4 } 2$

National Curriculum
written method of long (or short) division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate

Year 6

Concrete	Pictorial	Abstract
By Year 6 pupils should be competent with using the abstract method only. Use of the concrete stage from prior year groups can be used for intervention with pupils working below age-related expectations.	By Year 6 pupils should be competent with using the abstract method only. Use of the pictorial stage from prior year groups can be used for intervention with pupils working below age-related expectations.	Consolidate short division from Year 5 before introducing long division for 4-digit numbers by 2-digit numbers (you may wish to start with 3-digit by 2-digit). Move onto dividing 4-digit by 2-digit with remainders. r3 $\begin{aligned} & 1 \times 32=32 \\ & 2 \times 32=64 \\ & 3 \times 32=96 \\ & 4 \times 32=128 \\ & 5 \times 32=160 \\ & 10 \times 32=320 \end{aligned}$ Look at efficiency and when short division can be used for 4-digit by 2-digit.

LET Calculation Policy

Acknowledgements

Resources Used

- White Rose Calculation Policy
- Captain Cook Primary School Calculation Policy
- NPCAT Calculation Policy
- Purposeful Maths Calculation Policy
- LET EYFS Ready Documents

Many thanks to the following contributors

K Yates (Hurworth), P Mayes (Corporation Road), P Foulds (Mount Pleasant), C Harrison (Captain Cook), A Poulter (Vane Road), S Guest (Cambrai), R Farrier (Handale), R Carass (Heathfield)

